Validation of a novel and existing algorithms for the estimation of pulse transit time: advancing the accuracy in pulse wave velocity measurement.
نویسندگان
چکیده
The method used for pulse transit time (PTT) estimation critically affects the accuracy and precision of regional pulse wave velocity (PWV) measurements. Several methods of PTT estimation exist, often yielding substantially different PWV values. Since there is no analytic way to determine PTT in vivo, these methods cannot be validated except by using in silico or in vitro models of known PWV and PTT values. We aimed to validate and compare the most commonly used "foot-to-foot" algorithms, namely, the " diastole-minimum," "tangential," "maximum first derivative," and "maximum second derivative" methods. Also, we propose a new "diastole-patching" method aiming to increase the accuracy and precision in PWV measurements. We simulated 2,000 cases under different hemodynamic conditions using an accurate, validated, distributed, one-dimensional arterial model. The new algorithm detects and "matches" a specific region of the pressure wave foot between the proximal and distal waveforms instead of determining characteristic points. The diastole-minimum and diastole-patching methods showed excellent agreement compared with "real" PWV values of the model, as indicated by high values of the intraclass correlation coefficient (>0.86). The diastole-patching method resulted in low bias (absolute mean difference: 0.26 m/s). In contrast, PWV estimated by the maximum first derivative, maximum second derivative, and tangentia methods presented low to moderate agreement and poor accuracy (intraclass correlation coefficient: <0.79 and bias: >0.9 m/s). The diastole-patching method yielded PWV measurements with the highest agreement, accuracy, and precision and lowest variability.
منابع مشابه
Estimation of mechanical and durability properties of self-compacting concrete with fibers using ultrasonic pulse velocity
In this research, the performance of ultrasonic pulse velocity (UPV) in concrete is examined as a nondestructive experiment in order to estimate mechanical (compressive and tensile strength) and durability (water absorption) properties of fiber-reinforced self-compacted concrete For this purpose 11 mixture designs containing 3 types of fibers (steel: 0.1, 0.2, 0.3 and 0.4 percent by volume, Pol...
متن کاملAortic pulse wave velocity assessment in CMR: a novel method for transit time estimation
Background Aortic pulse wave velocity (PWV) is considered as the “gold standard” measurement of arterial stiffness and is commonly calculated as the ratio between the distance separating two locations along the artery and the transit time (Δt) needed for the pressure or velocity wave to cover this distance. PWV is increasingly assessed by means of cardiovascular magnetic resonance (CMR). Our go...
متن کاملتخمین بدون کاف فشارخون مبتنی بر ویژگیهای زمانی سیگنال نبض
Blood pressure is one of the vital signs. Specially, it is crucial for some cases such as hypertension patients and it should be monitored continuously in ICU/CCU. It must be noted that current systems to measure blood pressure, often require trained operators. As an example, in post-hospital cares, blood pressure control is difficult except with the presence of a nurse or use of a device that ...
متن کاملDesigning and Constructing an Optical System to measure Continuous and Cuffless Blood Pressure Using Two Pulse Signals
Introduction Blood pressure (BP) is one of the important vital signs that need to be monitored for personal healthcare. Arterial blood pressure is estimated from pulse transit time (PTT). This study uses two pulse sensors to get PTT. The aim of this study was to construct an optical system and to monitor blood pressure continuously and without cuff in people with different ages. Materials and M...
متن کاملContinuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals By Using Microsoft Visual C Sharp
Background: One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff.Objective: In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 304 11 شماره
صفحات -
تاریخ انتشار 2013